bookmate game
ru
Анналин Ын,Кеннет Су

Теоретический минимум по Big Data. Все что нужно знать о больших данных

Berätta för mig när boken läggs till
För att kunna läsa den här boken överför filer i EPUB- eller FB2-format till Bookmate. Hur laddar jag upp en bok?
Cегодня Big Data — это большой бизнес. Нашей жизнью управляет информация, и извлечение выгоды из нее становится центральным моментом в работе современных организаций. Не важно кто вы — деловой человек, работающий с аналитикой, начинающий программист или разработчик, — «Теоретический минимум по Big Data» позволит разобраться в основах новой и стремительно развивающейся отрасли обработки больших данных. Хотите узнать о больших данных и механизмах работы с ними? Каждому алгоритму посвящена отдельная глава, в которой не только объясняются основные принципы работы, но и даются примеры использования в реальных задачах. Большое количество иллюстраций и простые комментарии позволят легко разобраться в самых сложных аспектах Big Data. «Отличная визуализация концепций машинного обучения позволяет «нетехнарям» интуитивно понять сложные абстрактные понятия. Это лаконичная и точная выжимка содержит теоретический минимум информации, необходимый для первого знакомства с Big Data.» Этан Чен, автор курса CS 102: Big Data, Стэнфордский университет
Den här boken är inte tillgänglig just nu
185 trycksidor
Utgivningsår
25
Har du redan läst den? Vad tycker du om den?
👍👎

Intryck

  • Angelika Kravetzdelade ett intryckför 3 år sedan
    👍Värt att läsa

Citat

  • Андрей Алексеевhar citeratför 3 år sedan
    Более того, исключение элементов данных может привести к искаженным результатам в отношении отдельных групп. Например, коты могут менее охотно, чем другие, раскрывать информацию о количестве приобретаемых фруктов. Если мы удалим такие покупки, коты будут недостаточно представлены в итоговой выборке.
  • Catherinehar citeratför 3 år sedan
    Процент верных прогнозов. Простейшая мера точности прогнозирования — это доля достоверно правильных предсказаний. Вернемся к примеру с гастрономическими покупками из табл. 1. Мы можем выразить результаты задачи по предсказанию покупки рыбы в таком утверждении: Наша модель с точностью 90 % предсказывает, будет ли покупатель брать рыбу. Хотя эта метрика не так сложна для понимания, она не дает представления о том, где именно происходят ошибки прогнозирования.
  • Catherinehar citeratför 3 år sedan
    Одним из способов держать под контролем сложность модели является введение штрафного параметра в процессе регуляризации. Этот новый параметр штрафует модель за сложность, искусственно увеличивая погрешность и этим побуждая алгоритм находить оптимальное соотношение точности со сложностью. Тем самым сохраняя простоту модели, мы можем обеспечить ее масштабируемость.

I bokhyllorna

fb2epub
Dra och släpp dina filer (upp till fem åt gången)