en
Daniel Gross,Charles L Suffel,John T Saccoman

Spanning Tree Results for Graphs and Multigraphs

Berätta för mig när boken läggs till
För att kunna läsa den här boken överför filer i EPUB- eller FB2-format till Bookmate. Hur laddar jag upp en bok?
This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees.

The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers.
Contents:

An Introduction to Relevant Graph Theory and Matrix Theory
Calculating the Number of Spanning Trees: The Algebraic Approach
Multigraphs with the Maximum Number of Spanning Trees: An Analytic Approach
Threshold Graphs
Approaches to the Multigraph Problem
Laplacian Integral Graphs and Multigraphs

Readership: Graduate students and researchers in combinatorics and graph theory.
Key Features:

Unlike this book, very few books cover a significant amount of material about the Laplacian matrix, nor do they contain an extensive treatment of counting or optimizing the number of spanning trees
Other works in the field do not devote to multigraphs
Den här boken är inte tillgänglig just nu
825 trycksidor
Har du redan läst den? Vad tycker du om den?
👍👎
fb2epub
Dra och släpp dina filer (upp till fem åt gången)