With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control.
Contents:Part ISecond-order decomposition model for image processing: numerical experimentationOptimizing spatial and tonal data for PDE-based inpaintingImage registration using phase・amplitude separationRotation invariance in exemplar-based image inpaintingConvective regularization for optical flowA variational method for quantitative photoacoustic tomography with piecewise constant coefficientsOn optical flow models for variational motion estimationBilevel approaches for learning of variational imaging modelsPart IINon-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problemsThe Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controlsControllability of Keplerian motion with low-thrust control systemsHigher variational equation techniques for the integrability of homogeneous potentialsIntroduction to KAM theory with a view to celestial mechanicsInvariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometryTime-optimal control for a perturbed Brockett integratorTwist maps and Arnold diffusion for diffeomorphismsA Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part IIndex